Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 113(27): 7784-94, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19522522

RESUMO

Quantum yields, Phi, for the production of the formyl radical, HCO, in the photolysis of glyoxal were determined at 85 wavelengths, lambda, in the range of 290-420 nm at pressures between 50 and 550 Torr (N(2)) at 298 K using pulsed-laser photolysis combined with cavity ring-down spectroscopy detection of HCO. HCO quantum yields were parametrized using a Stern-Volmer analysis to obtain extrapolated zero-pressure HCO quantum yields, Phi(0)(lambda), and values for the ratio of the rate coefficients for quenching and dissociation, k(q)/k(d)(lambda), at each wavelength. Phi(0)(lambda) varied smoothly with wavelength with a maximum value of approximately 1.8 in the range 300-385 nm with values decreasing to near 0 at 420 nm and 0.4 at 290 nm. k(q)/k(d)(lambda) was measurable at nearly all photolysis wavelengths and is well-represented by the relationship k(q)/k(d)(lambda) = (2.3 x 10(-20)) + (1.5 x 10(-19)) exp(-0.4DeltaE) (cm(3) molecule (-1)) where DeltaE = ((28,571/lambda) - 72.5) (kcal mol(-1)), lambda is the photolysis wavelength (nm), and 72.5 kcal mol(-1) is the threshold for glyoxal photodissociation. Differences in our HCO quantum yield wavelength- and pressure-dependence with previous studies are discussed. The present HCO quantum yield data are appropriate for use in atmospheric model calculations, and revised wavelength-dependent photolysis branching ratios for the production of 2HCO, H(2)CO + O(2), and H(2) + 2CO at atmospheric pressure are presented.

2.
J Phys Chem A ; 111(37): 8950-8, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17705457

RESUMO

The visible absorption spectrum of the acetyl radical, CH(3)CO, was measured between 490 and 660 nm at 298 K using cavity ring-down spectroscopy. Gas-phase CH(3)CO radicals were produced using several methods including: (1) 248 nm pulsed laser photolysis of acetone (CH(3)C(O)CH(3)), methyl ethyl ketone (MEK, CH(3)C(O)CH(2)CH(3)), and biacetyl (CH(3)C(O)C(O)CH(3)), (2) Cl + CH(3)C(O)H --> CH(3)C(O) + HCl with Cl atoms produced via pulsed laser photolysis or in a discharge flow tube, and (3) OH + CH(3)C(O)H --> CH(3)CO + H(2)O with two different pulsed laser photolysis sources of OH radicals. The CH(3)CO absorption spectrum was assigned on the basis of the consistency of the spectra obtained from the different CH(3)CO sources and agreement of the measured rate coefficients for the reaction of the absorbing species with O(2) and O(3) with literature values for the CH(3)CO + O(2) + M and CH(3)CO + O(3) reactions. The CH(3)CO absorption spectrum between 490 and 660 nm has a broad peak centered near 535 nm and shows no discernible structure. The absorption cross section of CH(3)CO at 532 nm was measured to be (1.1 +/- 0.2) x 10(-19) cm(2) molecule(-1) (base e).

3.
Phys Chem Chem Phys ; 8(31): 3636-42, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16883392

RESUMO

Absorption cross sections for the A 2A'' (0,9(0),0) <-- X 2A' (0,0(1),0) band of HCO were determined at 295 K using pulsed laser photolysis combined with cavity ring-down spectroscopy. Formyl radicals (HCO) were produced from the reaction of atomic chlorine, generated by photolysis of Cl2 at 335 nm, with formaldehyde. The concentration of HCO was calibrated using two independent photochemical methods. The peak cross section of the P8 line was determined to be (1.98 +/- 0.36) x 10(-18) cm2, and the intensity of the entire band was normalized to this line. The quoted 2 sigma uncertainty includes estimated systematic errors. Comparisons to previously reported values of HCO cross sections in this band are discussed.


Assuntos
Formaldeído/química , Radicais Livres/química , Fotoquímica , Absorção , Cloro/química , Ozônio/química , Fotólise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...